TECHNICALLY BASED LOCAL LIMIT STUDY MCKINLEYVILLE COMMUNITY SERVICES DISTRICT

Prepared for:

McKinleyville Community Services District 1656 Sutter Road McKinleyville, CA 95519

November 2020

Prepared by: Orrin Plocher and Stan Thiesen of

Freshwater Environmental Services

Sunny Brae Center Arcata, California 95521 Phone (707) 839-0091

TABLE OF CONTENTS

TABLE OF CONTENTS	i
ACRONYMS AND DEFINITIONS	iii
1.0 INTRODUCTION	1
2.0 WASTEWATER MANAGEMENT FACILITY DESCRIPTION	2
2.1 Facility, Location and Ownership	2
2.2 Facility Description	2
2.3 Collection System Description	2
3.0 EXISTING LOCAL LIMITS AND DEVELOPMENT APPROACH	3
4.0 POLLUTANTS OF CONCERN	4
5.0 SAMPLING AND MONITORING	6
5.1 Treatment Plant Sampling	6
5.2 Collection System Sampling	7
5.3 Sample Handling	7
5.4 Analytical Methods and Results	7
5.5 Quality Assurance/Quality Control	
6.0 FLOW DATA	
6.1 Total POTW Flow	9
6.2 WAS Flow to Disposal	9
6.3 Flows from Controlled Sources	9
6.4 Flows from Uncontrolled Sources	9
7.0 CALCULATING THE MAXIMUM ALLOWABLE HEADWORKS LOADING	10
7.1 Calculating Removal Efficiencies	10
7.2 Calculating Allowable Headworks Loading	12
7.3 Designation of Maximum Allowable Headworks Loading	13
7.4 Calculation of Maximum Allowable Industrial Loading	13
8.0 DESIGNATING AND IMPLEMENTING LOCAL LIMITS	15
8.1 Actual Loadings vs. MAHL	15

9.0 REFERENCES	10
8.3 Proposed Local Limits	18
8.2 Biological Oxygen Demand	16

ACRONYMS AND DEFINITIONS

- ADRE Average Daily Removal Efficiency.
- AHL Allowable Headworks Loading. The estimated maximum loading of a pollutant that can be received at a POTW's headworks that should not cause a POTW to violate a particular treatment plant or environmental criterion. AHLs are developed to prevent interference or pass through.
- FSE Food Service Establishment
- FES Freshwater Environmental Services
- IU Industrial Users. Non-domestic source of pollutants into a POTW regulated under Section 307(b), (c) or (d) of the Clean Water Act.
- LCS Laboratory Control Spike
- LCSD Laboratory Control Spike Duplicate
- MAHL Maximum Allowable Headworks Loading. The estimated maximum loading of a pollutant that can be received at a POTW's headworks without causing pass through or interference. The most protective (lowest) of the AHLs (see definition) estimated for a pollutant.
- MAIL Maximum Allowable Industrial Loading. The estimated maximum loading of a pollutant that can be received at a POTW's headworks from all permitted industrial users and other controlled sources without causing pass through or interference. The MAIL is usually calculated by applying a safety factor to the MAHL and discounting for uncontrolled sources, hauled waste and growth allowance.
- MGD Million Gallons Per Day
- MS Matrix Spike
- MSD Matrix Spike Duplicate
- NPDES National Pollution Discharge Elimination System
- POC Pollutant of Concern. Any pollutant that might reasonably be expected to be discharged to the POTW in sufficient amounts to pass through or interfere with the works, contaminate its sludge, cause problems in its collection system, or jeopardize its workers.
- POTW Publicly Owned Treatment Works
- SIU Significant Industrial User

- SUO Sewer Use Ordinance
- WWMF Wastewater Management Facility
- WAS Waste Activated Sludge

LIST OF APPENDICES

- APPENDIX A LABORATORY RESULTS
- APPENDIX B REGION 5 EPA SPREADSHEET MODEL

1.0 INTRODUCTION

Federal water quality regulations require local governments to prevent the introduction of certain pollutants into their Publicly Owned Treatment Works (POTW), in order to prevent interference with wastewater treatment processes and pass through of pollutants, and provide for the use and disposal of municipal biosolids (sludge). This is accomplished through development and implementation of specific effluent limits (local limits) for industrial users. These limits are developed to reflect the specific needs and capabilities at individual POTWs and protect the waterbody to which the POTW discharges.

Freshwater Environmental Services (FES) assisted McKinleyville Community Services District (MCSD), (the District) to develop a Local Limits Update Workplan for McKinleyville Community Services District Wastewater Management Facility (WWMF), dated September 12, 2019.

The California Regional Water Quality Control Board North Coast Region reviewed approved implementation of the workplan in an email dated December 12, 2019. Sampling was generally performed per the workplan updated in 2019.

The workplan, sampling, and study were prepared and conducted following the general principals contained in EPA's 2004 Local Limits Development Guidance (EPA, 2004).

This Study contains the following elements:

- The Wastewater Management Facility (WWMF) and collection system is described in Section 2.0;
- The existing local limits and development approach is presented in Section 3.0;
- The pollutants of concern are presented in Section 4.0;
- The sampling and analysis are described in Section 5.0;
- Removal efficiencies are calculated in Section 7.0;
- Maximum allowable headworks loading (MAHL) is calculated in Section 7.0;
- Allocation of MAHL to Industrial Users is presented in Section 8.0; and
- The references cited in this report are listed in Section 9.0.

2.0 WASTEWATER MANAGEMENT FACILITY DESCRIPTION

2.1 Facility, Location and Ownership

MCSD owns and operates the Wastewater Management Facility (WWMF) located at 675 Hiller Road in McKinleyville, Humboldt County, California. Discharges from the WWMF are regulated by National Pollution Discharge Elimination System (NPDES) permit number **CA0024490.**

2.2 Facility Description

During the period from October 1 through May 14, discharges of secondary treated wastewater to the Mad River may occur only when the flow of the Mad River, as measured at USGS Gauge No. 11-4810.00 in the Mad River at the Highway 299 overpass, is greater than 200 cubic feet per second.

During dry weather, reclaimed effluent is primarily applied to pasture lands for production of fodder crops at two ranches (Fischer and Pialorsi Ranch, both owned by the District). A portion is discharged to percolation ponds or recycled for dry-weather maintenance of the Hiller storm water treatment wetland, the adjacent forested area, or irrigation of agricultural lands.

2.3 Collection System Description

The MCSD collection system has some unique characteristics that affect the local limits approach. The collection system is dominated by domestic/commercial users. There are currently three Significant Industrial Users (SIU), Six-Rivers Brewery, Steve's Septic, and Auto Spa Carwash. Commercial dischargers include Food Service Establishments (FSEs) that generate Fats, Oils and Greases (FOG). Beyond FSEs, commercial users are limited in number and potential impact. Non-FOG commercial users with the potential to impact the system are limited.

3.0 EXISTING LOCAL LIMITS AND DEVELOPMENT APPROACH

The MCSD's existing local limits are shown in the Table below. The existing MCSD local limits were developed based on the report titled: *McKinleyville Community Services District Technical Basis for Wastewater Limits* dated January 10, 2012 and are shown in the table below. Due to significant changes in treatment technology related to the WWMF upgrade, MCSD has reevaluated the existing local limits to determine if they are still protective of the POTW or need to be modified.

	Daily Maximum Limit			
Pollutant	(mg/L)			
Conventio	onal			
BOD	354			
Oil and Grease (petroleum				
and vegetable)	100			
Metals				
Copper	0.13			
Lead	0.0055			
Molybdenum	0.0047			
Nickel	0.0052			
Zinc	0.135			
Volatile / Semi-Volatile O	rganic Compounds			
bis(2-ethylhexyl)phthalate	0.0235			

EXISTING LOCAL LIMITS¹

1 - MCSD Resolution 2012-13, Rule 24.09.01.

MCSD used the Maximum Allowable Headworks Loading (MAHL) calculation methodology generally described in EPA's 2004 *Local Limits Development Guidance* to establish its revised local limits. The MAHL methodology includes four basic steps:

- Determine the Pollutants of Concern (POC);
- Collect and analyze data;
- Calculate MAHLs for each POC; and
- Designate and implement the local limits.

MCSD used a spreadsheet-based model developed by Region 5 U.S. Environmental Protection Agency's (USEPA) to facilitate calculation of AHLs (Allowable Headworks Loading), MAHLs, and the proposed local limits are consistent with the methodology contained in EPA's 2004 *Local Limits Development Guidance.*

After completing the MAHL methodology, local limits were adjusted to address collection system concerns and practical considerations.

4.0 POLLUTANTS OF CONCERN

A Pollutant of Concern (POC) is any pollutant that may be discharged to the POTW in sufficient amounts to pass through treatment processes, interfere with treatment processes, jeopardize worker health and safety, or cause operational problems. POCs may also include pollutants in the applicable NPDES permit or biosolids quality regulations. In order to determine the POCs to be evaluated, MCSD considered the following:

- MCSD NPDES permit requirements;
- Biosolids quality regulations;
- Treatment process inhibition;
- Water Quality Criteria (Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays, and Estuaries of California, 2005);
- Known Industrial Users;
- Sampling and violation history at the WWMF;
- California hazardous waste criteria;
- Current local limits; and
- EPA guidance documents.

Based on an evaluation of all compounds detected in influent samples since 2011, all compounds detected in effluent samples since the treatment system was optimized in (November 2017), a list of potential POCs with driving factors for further consideration was developed and resulted in a list of final POCs shown in the table below:

Potential Pollutant of Concern	Potential Pollutant of Concern	Reason For Inclusion		
	Conventiona	l		
Biochemical Oxygen Demand (BOD)	Х	EPA 15 POCs, NPDES limit		
Total Suspended Solid (TSS)	Х	EPA 15 POCs, NPDES limit		
Nitrate	Х	NPDES limit and detections in effluent		
Me	tals and Cyar	nide		
Arsenic	Х	EPA 15 POCs		
Cadmium	Х	EPA 15 POCs		
Total Chromium	Х	EPA 15 POCs		
Copper	Х	EPA 15 POCs		
Cyanide	Х	EPA 15 POCs		
Lead	Х	EPA 15 POCs		
Molybdenum	Х	EPA 15 POCs		
Mercury	Х	EPA 15 POCs		
Nickel	Х	EPA 15 POCs		
Selenium	Х	EPA 15 POCs		
Silver	Х	EPA 15 POCs		
Zinc	Х	EPA 15 POCs		
Volatile / Semi-Volatile Organic Compounds				
Bis(2-ethylhexyl)phthalate	Х	Existing local limit, detected in effluent		
carbon tetrachloride	Х	NPDES limit		

Ammonia nitrogen enters the WWMF and is converted into various forms of nitrogen through chemical processes which include formation of nitrate. Since nitrate formation is a function of, and byproduct of treatment, it is not appropriate to calculate local limits for nitrate based on allowable headworks loading. Nitrate will not be further discussed in this local limits analysis.

5.0 SAMPLING AND MONITORING

All sampling was conducted under normal operating conditions during dry weather over the period from July 14, 2020 to July 22, 2020. Influent samples were collected from July 14, 2020 to July 20, 2020. Effluent samples were collected from July 16, 2020 to July 22, 2020.

Sampling followed the flow of the treatment process based on the hydraulic residence time (i.e., effluent sampling was conducted after influent sampling and lagged by the hydraulic residence time of approximately 48 hours). Specific sampling for local limits development was determined following an extensive review of existing data and potential non-domestic sources. The District also provided actual flow data regarding total POTW commercial/domestic wastewater flow, industrial wastewater flow, and flow of waste activated sludge (WAS). The District used this data to calculate the load of each POC coming into the POTW. Wastewater samples were 24-hour, time-composited samples. Time composite samples consisted of hourly subsamples collected over a 24-hour period. Sulfide and oil and grease samples were grab composite samples. Individual grab samples that were collected for the grab composite samples were handled, preserved, and composited in accordance with the guidance on pages 4-9 of the USEPA Guidance document. Aliquots were collected in separate containers, preserved appropriately, and composited manually at the laboratory to create a single sample for analysis.

MCSD collected wastewater samples for seven consecutive days to characterize the changes in loading. WAS was sampled for 2 days, one weekday and one weekend day.

The local limits sampling locations include:

Treatment Plant Sampling:

- Headworks Influent (1 location)
- Final Effluent (1 location)
- Biosolids (WAS)

Collection System Sampling:

- Domestic/commercial Collection System, Manhole 1-20 samples are labeled "North Collection System" and samples from the Fischer Lift Station are labeled "South Collection System".)
- Industrial data was based on existing data from the three Significant Industrial Users (SIUs).

5.1 Treatment Plant Sampling

Influent samples and effluent samples were collected over 7 consecutive days separated by 48 hours (calculated hydraulic residence time) and analyzed for the POCs. Influent sampling was collected at the headworks prior to mixing with other wastewater streams. Effluent samples were collected from the end of the Chlorine Contact Chamber at Effluent discharge point EFF-001. WAS was sampled just prior to discharge into the Biosolids Basin over a two-day period within the week of influent/effluent sampling. The WAS samples were manually composited over eight hours using equal hourly aliquots. WAS aliquots were collected into one container which were stored in the wastewater laboratory refrigerator. The eight-hour WAS composite samples were homogenized and divided into the appropriate laboratory bottles at the end of each day and stored in the lab refrigerator overnight.

Sampling documentation did not note any infrequent, yet routine, activities occur during the sampling period. Examples of infrequent, yet routine, activities include receipt of hauled waste, tank cleaning, or other maintenance activities that might affect wastewater characteristics.

5.2 Collection System Sampling

Samples from two locations within the collection system (Manhole 1-20 and Fischer Lift Station) were collected for seven consecutive days and analyzed for the POCs. Manhole 1-20 samples are labeled "North Collection System" and samples from the Fischer Lift Station are labeled "South Collection System". The samples were from locations of domestic/commercial discharge. The sampling within the collection system was performed within the same seven-day period of influent sampling at the treatment plant.

5.3 Sample Handling

Wastewater samples were collected in laboratory provided containers labeled and immediately placed in an ice-cooled chest for delivery to an analytical laboratory certified by the California Department of Health Services for the required analyses. All sample handling included chain-of-custody documentation.

5.4 Analytical Methods and Results

All wastewater samples were analyzed utilizing the methods indicated in the table below:

Analyte	Method	MDL (µg/L)	RL (µg/L)	Holding Time	Container/ preservation
Arsenic		1.5	5		
Cadmium		0.17	5		
Chromium		0.21	5		
Copper		0.72	5		
Lead	EPA 200.8 Rev 5.4	0.082	5	90 days	
Molybdenum	LFA 200.0 Nev 3.4	0.063	5	30 days	500 mL HDPE with HNO ₃
Nickel		1.1	5		
Selenium		4	10		
Silver		0.73	5		
Zinc		1.1	10		
Mercury	EPA 245.1	0.26	1	28 days	
Carbon tetrachloride	EPA 624	0.44	1	7 days	40 mL VOA (3) with HCL
bis(2-ethylhexyl)phthalate	EPA 606	1.5	4	7 days	1 L amber glass
Cyanide	SM 4500-CN E	0.007 mg/L	0.02 mg/L	14 days	1 L HDPE with NaOH
Cyanide	5W 4500-CN E	0.007 mg/L	0.02 mg/L	14 udys	
BOD	SM 5210B	2 mg/L	2 mg/L	48 hrs	1/2 gallon HDPE
TSS	SM 2540D	0.6 mg/L	1 mg/L	7 days	1/2 gaion hor E

All biosolid samples (WAS) were analyzed utilizing the methods indicated in the table below:

Analyte	Method	MDL (mg/kg)	RL (mg/kg)	Holding Time	Container/ preservation
Arsenic		0.83	2		
Cadmium		0.012	1		
Chromium		1.3	2		
Copper		0.13	1		
Lead	EPA 6020	0.38	1	90 days	
Molybdenum	EFA 0020	0.2	1	90 days	4 oz glass
Nickel		0.14	1		
Selenium		0.98	2		
Silver		0.27	1		
Zinc	1	0.15	1		
Mercury	EPA 245.1	0.0088	0.1	28 days	
Cyanide	EPA 9014	0.021	0.5	14 days	4 oz glass

The laboratory results for each POC are included in Appendix A.

5.5 Quality Assurance/Quality Control

Following receipt of the laboratory analytical report all laboratory QC batches were checked to ensure that the correct number of samples were analyzed, the holding times were not exceeded, surrogate recoveries were within stated control limits, and that Laboratory Method Blanks, Matrix Spikes (MSs), Matrix Spike Duplicates (MSDs), Laboratory Control Samples (LCSs) and Laboratory Control Sample Duplicates (LCSDs) were all tested and within the laboratory-provided acceptable limits.

The only QA/QC issue identified was some of the surrogate recoveries for Pyrene-d10 for EPA Method 606 were below the lower acceptance limit. The surrogate recoveries for the quality control samples (laboratory control spikes and laboratory control spike duplicates) were within acceptance limits. This indicates the low recovery may be due to matrix effects from the sample.

6.0 FLOW DATA

To calculate MAHLs and Maximum Allowable Industrial Loading (MAILs), data about the flow of various wastestreams is required to allow mass quantities to be computed. Required flow data are described in the following sections.

6.1 Total POTW Flow

The actual average daily influent flow over the sampling period (July 14, 2020 to July 22, 2020) (0.858 Million gallons per day (MGD) was used as Total POTW flow (Q_{potw}) for loading calculations as shown below:

 $Q_{potw} = 0.858 MGD$

6.2 WAS Flow to Disposal

The maximum average daily flow of all volume of WAS from digester to holding pond for the past 12 months (Jan 2019 – Dec 2019) (0.043 MGD) was used as (Q_{sldg}) for loading calculations. Percent solids were estimated at 1%.

$$Q_{sldg} = 0.043 MGD$$

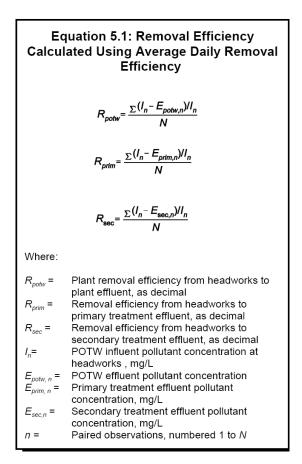
6.3 Flows from Controlled Sources

MCSD has three significant industrial users (SIUs) that discharged wastewater estimated at an average of 0.019 MGD in 2019.

6.4 Flows from Uncontrolled Sources

Flows from uncontrolled sources used in loading calculations was estimated by subtracting the 2019 SIU flow from the influent flow resulting in 0.839 MGD domestic/commercial.

7.0 CALCULATING THE MAXIMUM ALLOWABLE HEADWORKS LOADING


The Maximum Allowable Headworks Loading (MAHL) is the estimated maximum loading of a pollutant that can be received by a POTW without inhibiting treatment processes or exceeding any applicable environmental criteria. MCSD followed the steps below to determine the MAHL for each POC:

- 1. Determine the removal efficiencies for each POC;
- Calculate the Allowable Headworks Loading (AHL) for each POC, for all applicable environmental criteria, based on influent flow rates and POC removal efficiencies; and
- 3. Designate the MAHL as the strictest AHL.

The District used a spreadsheet-based model developed by the U.S. Environmental Protection Agency's (USEPA) Region 5 to facilitate calculation of AHLs, MAHLs, and the proposed local limits (Appendix B).

7.1 Calculating Removal Efficiencies

The District calculated POTW removal efficiency utilizing the formula for Average Daily Removal Efficiency (ADRE).

Pollutant of Concern	Comments from Data Set
Priority Pollutant	s Metals, sulfur compounds & Cyanide
	All influent and effluent samples were ND, no
Arsenic	removal efficiencies were calculated.
	All influent and effluent samples were ND or J-
Cadmium	flagged as estimates, no removal efficiencies were calculated.
Lead	All influent and effluent samples were J-flagged as estimates no removal efficiencies were calculated.
Mercury	All influent and effluent samples were ND, no removal efficiencies were calculated.
Molybdenum	All influent and effluent samples were J-flagged as estimates no removal efficiencies were calculated.
	All influent and effluent samples were J-flagged as
Nickel	estimates no removal efficiencies were calculated.
	All influent and effluent samples were ND, no
Selenium	removal efficiencies were calculated.
	All influent and effluent samples were ND or J-
	flagged as estimates, no removal efficiencies were
Silver	calculated.
	Organic Compounds
	All influent and effluent samples were ND, no
Carbon tetrachloride	removal efficiencies were calculated.

ADREs were not calculated for the POCs listed below for the following reasons:

ADREs for the remaining POCs are listed below:

Pollutant of Concern	Removal Efficiency	Method		
Conventior	nal			
Biochemical Oxygen Demand	98.81	ADRE		
Non-Filterable Residue (TSS)	99.55	ADRE		
Priority Pollutants Metals				
Copper	93.63	ADRE		
Zinc	72.27	ADRE		
Organic Compounds				
bis(2-ethylhexyl phthalate)	80.18 ¹	ADRE		

1-All effluent results were ND. 1/2 minimum detection limit was used to calculate removal efficiency.

7.2 Calculating Allowable Headworks Loading

Allowable Headworks Loading (AHL) is the estimated maximum loading of a pollutant that can be received at a POTW's headworks that should not cause a POTW to violate a particular treatment plant or environmental criterion. AHLs are developed to prevent interference or pass through.

After collecting and evaluating the necessary data, MCSD calculated AHLs for each POC based on its treatment efficiency and on environmental criteria for pass through and interference. AHLs were calculated for each applicable criterion including:

- Effluent based criteria (NPDES ORDER NO. R1-2018-0032);
- Most stringent water quality criteria (from NPDES Reasonable Potential Analysis RPA);
- Sludge based criteria (40 CFR Part 503);
- Published inhibition factors for activated sludge; and
- Published inhibition factors for nitrification.

The following formulas were used to calculate AHLs:

Allowable Headworks Loading (AHL) Based on NPDES Permit Limits $AHL_{npdes} = (8.34)(C_{npdes})(Q_{potw}) / (1 - (R_{potw} / 100))$ AHL_{npdes} = AHL based on NPDES permit limit, lb/day C_{npdes} = NPDES permit limit, mg/L Q_{potw} = POTW average flow rate, MGD R_{potw} = Plant removal efficiency from headworks to effluent, as percent. 8.34 = Conversion factor AHL Based on Water Quality Criteria AHL_{wq} = 8.349(C_{wq} (Q_{str}+Q_{potw})-(C_{str*Qsrt)} / (1 - (R_{potw} / 100)) AHL_{wa} = AHL based on water guality criteria, lb/day Cetr = Receiving stream background concentration, mg/L (assumed to be zero since WQOs are specific discharge limits and not based on maximum cumulative loading) Cwg = State water quality criteria, mg/L Q_{str} = Receiving stream (upstream) flow rate, MGD (assumed to be 30 times the Qpotw since the previous NPDES permit had a 30:1 zone of initial dilution) Q_{potw} = POTW average flow rate, MGD R_{potw} = Plant removal efficiency from headworks to effluent, as percent. 8.34 = Conversion factor AHLs Based on Sludge Land Application and Surface Disposal Criteria (for conservative pollutants) AHL_{sida}= (8.349)(C_{sidastd})(PS/100)(Q_{sida})(G_{sida}) /R_{potw} AHL_{sldg} = AHL based on sludge, lb/day C_{sidgstd} = Sludge standard, mg/kg dry sludge PS =Percent solids of sludge to disposal, as percent Q_{sldg} = Total sludge flow rate to disposal, MGD R_{potw} = Plant removal efficiency from headworks to effluent, as percent. G_{sldg} = Specific Gravity of sludge, kg/L 8.34 = Conversion factor

AHLs for the POCs under review are indicated below:

	Allowable Headworks		
Pollutant of Concern	Loading lb/day	Criteria	
BOD	18,040	NPDES Monthly Limit	
BOD	4,569	Kennedy/Jenks Consultants 2030 Loading Capacity (Max Monthly lbs/day)	
TSS	429,343	NPDES Monthly Limit	
TSS	5,664	Kennedy/Jenks Consultants 2030 Loading Capacity (Max Monthly lbs/day)	
Copper	5.62	Most Stringent Water Quality Objective (from NPDES RPA)	
Copper	112.33	Activated Sludge Inhibition Level	
Copper	5.62	Nitirfication Inhibition Level	
Copper	5.61	USEPA 503 Sludge Regulations	
Zinc	1.60	Most Stringent Water Quality Objective (from NPDES RPA)	
Zinc	7.74	Activated Sludge Inhibition Level	
Zinc	2.06	Nitirfication Inhibition Level	
Zinc	13.57	USEPA 503 Sludge Regulations	
bis(2-Ethylhexyl) phthalate	0.065	NPDES Monthly Limit	
bis(2-Ethylhexyl) phthalate	0.065	Most Stringent Water Quality Objective (from NPDES RPA)	

7.3 Designation of Maximum Allowable Headworks Loading

MAHL is the estimated maximum loading of a pollutant that can be received at a POTW's headworks without causing pass through or interference. MAHLs are the most protective (lowest) of the AHLs (see definition) estimated for a pollutant. The table below lists the MAHLs for the POCs and criteria:

Pollutant of Concern	Maximum Allowable Headworks Loading Ib/day	Criteria
BOD	4,569	Kennedy/Jenks Consultants 2030 Loading Capacity (Max Monthly lbs/day)
TSS	5,664	Kennedy/Jenks Consultants 2030 Loading Capacity (Max Monthly Ibs/day)
Copper	5.61	USEPA 503 Sludge Regulations
Zinc	1.60	Most Stringent Water Quality Objective (from NPDES RPA)
bis(2-Ethylhexyl) phthalate	0.065	NPDES Monthly Limit

7.4 Calculation of Maximum Allowable Industrial Loading

Maximum Allowable Industrial Loading (MAIL) is the estimated maximum loading of a pollutant that can be received at a POTW's headworks from all industrial users and other controlled sources without causing pass through or interference. The MAIL was calculated by applying a 10% safety/growth factor to the MAHL and discounting for uncontrolled sources.

The formula for calculating MAIL is included below:

Maximum Allowable Industrial Loading MAIL = MAHL(1 - (SF / 100)) - L_{unc} MAIL = Maximum allowable industrial loading, lb/day MAHL = Maximum allowable headworks loading, lb/day SF = Safety factor, percent L_{unc} = Loading from uncontrolled sources (domestic)

The table below contains the calculated MAILs	for the POCs:
---	---------------

	Maximum Allowable Headworks		Maximum Allowable Industrial
Pollutant of Concern	Loading lb/day	Criteria	Loading lb/day
BOD	4,569	Kennedy/Jenks Consultants 2030 Loading Capacity (Max Monthly lbs/day)	1,936
		Kennedy/Jenks Consultants 2030 Loading Capacity (Max	
TSS	5,664	Monthly lbs/day)	4,132
Copper	5.61	USEPA 503 Sludge Regulations	4.14
Zinc	1.60	Most Stringent Water Quality Objective (from NPDES RPA)	0.117
bis(2-Ethylhexyl) phthalate	0.065	NPDES Monthly Limit	0.028

8.0 DESIGNATING AND IMPLEMENTING LOCAL LIMITS

EPA recommends that local limits are needed when average influent loading of a toxic pollutant exceeds 60 percent of the MAHL.

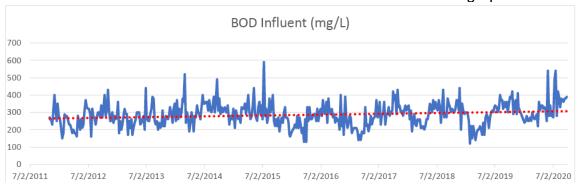
8.1 Actual Loadings vs. MAHL

The formula below is used for calculating the percentage of MAHL being received at the POTW:

Actual Loading vs. MAHL Calculation L_% = (L_{INFL}/MAHL) 100 L_% = Percentage of the MAHL L_{INFL} = Current average influent Loading, lb/day MAHL = Calculated MAHL lb/dy

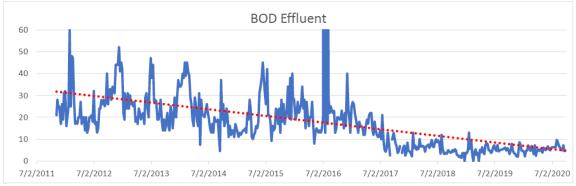
The above equation has been used to calculate current loading as a percent of MAHL as shown in the table below:

Pollutant of Concern (POC)	Maximium Allowable Headworks Loading (Ibs/day) (MAHL)	Average Influent Concentration mg/l	POTW Flow (MGD) (Qpotw)	Influent	Loading as a Percent of of MAHL
BOD	4569	473	0.858	3384.656	74%
TSS	5664	294	0.858	2103.782	37%
Copper	5.61	0.13	0.858	0.930	17%
Zinc	1.60	0.189	0.858	1.352	<mark>85%</mark>
bis(2-Ethylhexyl) phthalate	0.06	0.00431	0.858	0.031	47%


Yellow highlighted rows indicate pollutants with current loading greater than 60% of the MAHL.

The BOD sampling results that indicate a BOD loading at 74% of the MAHL is based on a 1-week sampling event, however it does not represent a larger window of testing results. The average BOD loading over the last 9 months averaged 2,426 lbs./day which would put the District loading as a percent of MAHL at 53% vs 74%.

EPA recommends that local limits are needed when the average influent loading of a toxic pollutant exceeds 60 percent of the MAHL (EPA, 2004).


The average actual loading of two pollutants exceed 60% of the MAHL, including BOD and zinc.

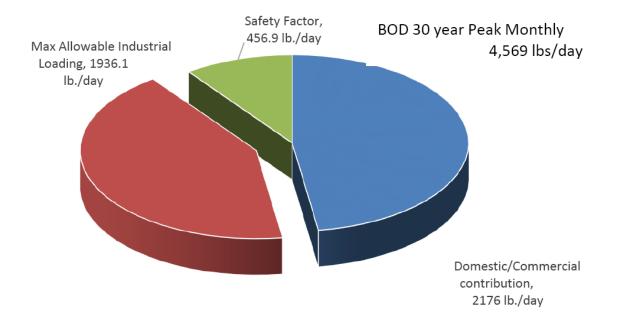
8.2 Biological Oxygen Demand

Historic BOD influent concentrations and trends are shown in the graph below:

Historic BOD effluent concentrations and trends are shown in the graph below:

The effect of the new WWMF (constructed in late 2017) is shown by the overall reduction of BOD concentrations and variability.

Historic BOD loading and trends are shown in the graph below:


Based on the data above, BOD loading has slightly increased in the past 9 years. Kennedy/Jenks Consultants designed the current WWMF to accommodate the 2030 projected BOD loading. The 2030 maximum monthly BOD loading was projected to be **4,569 pounds/day** which is used for this analysis as a

conservative MAHL. Domestic/commercial BOD loading was calculated during the local limits study as shown below:

Average Inf Conc mg/l	473
Flow MGD	0.858
Lbs/day BOD	3384.7

Based on the BOD loading calculated from the local limits study, the 2030 BOD loading projections provided by Kennedy/Jenks Consultants, and a 10% growth and safety factor, the MAIL for BOD 1,936 lbs./day as shown in the chart and graph below:

BOD MAHL		%MAHL	
30 year Max Monthty ppd (KJC)	4569	lbs/day	100%
Domestic/Commercial contribution	2176	lbs/day	48%
Max Allowable Industrial Loading	1936.1	lbs/day	42%
Safety Factor	456.9	lbs/day	10%

8.3 Proposed Local Limits

The District has decided to allocate MAILs uniformly among all IUs and place uniform concentration limits in the local SUO/resolution for zinc. The District has decided to change from a concentration based local limit for BOD to a mass allocation limit with a MAIL established at 1,936 lbs/day. Changes to existing local limits and new local limits are proposed below:

In EPA's view, a POTW should <u>not</u> use current loading as a percent of MAHL in deciding whether to continue to control a particular pollutant by a local limit because the enforcement of the local limit may be the reason that the pollutant loading has been reduced or is no longer causing problems. If the local limit were removed, industrial users (IUs) may discontinue their use of wastewater pretreatment and POTW loadings may increase above the threshold in the criteria (EPA, 2004).

There are only three SIUs with discharge permits being monitored. There are no IUs implementing pretreatment for the pollutants being proposed for local limit elimination and an increase in loading of are not likely nor anticipated. The proposed changes to existing local limits are listed in the table below:

	Current	Proposed Daily Maximum
	Daily Maximum Limit ¹	Limit
Pollutant	(mg/L)	(mg/L)
	Conventional	
BOD	354	MAIL of 1,936 Ibs/day (to be allocated as mass limits through Individual Industrial User Permits)
Oil and Grease		,
(petroleum and vegetable)	100	100
Me	tals	
Copper	0.13	Eliminate
Lead	0.0055	Eliminate
Molybdenum	0.0047	Eliminate
Nickel	0.0052	Eliminate
Zinc	0.135	0.741
Volatile / Se	emi-Volatile Organic Comp	ounds
bis(2-ethylhexyl)phthalate	0.0235	Eliminate

1 - MCSD Resolution 2012-13, Rule 24.09.01.

9.0 REFERENCES

- Freshwater Environmental Services, 2012, Crescent City Technical Basis for Wastewater Limits: January
- United States Environmental Protection Agency, 2004, *Local Limits Development Guide*: July.

APPENDIX A

LABORATORY RESULTS

Biochemical Oxygen Demand	South Collection System (Composite)	7/14/2020	620	mg/L		2	2
Biochemical Oxygen Demand	South Collection System (Composite)	7/15/2020	370	mg/L		2	2
Biochemical Oxygen Demand	South Collection System (Composite)	7/16/2020	280	mg/L		2	2
Biochemical Oxygen Demand	South Collection System (Composite)	7/17/2020	220	mg/L		2	2
Biochemical Oxygen Demand	South Collection System (Composite)	7/18/2020	170	mg/L		2	2
Biochemical Oxygen Demand	South Collection System (Composite)	7/19/2020	260	mg/L		2	2
Biochemical Oxygen Demand	South Collection System (Composite)	7/20/2020	260	mg/L		2	2
Cadmium	Eff-001 (Composite)	7/16/2020	0.17	μg/L	ND	5	0.17
Cadmium	Eff-001 (Composite)	7/17/2020	0.17	μg/L	ND	5	0.17
Cadmium	Eff-001 (Composite)	7/18/2020	0.17	μg/L	ND	5	0.17
Cadmium	Eff-001 (Composite)	7/19/2020	0.17	μg/L	ND	5	0.17
Cadmium	Eff-001 (Composite)	7/20/2020	0.17	μg/L	ND	5	0.17
Cadmium	Eff-001 (Composite)	7/21/2020	0.17	μg/L	ND	5	0.17
Cadmium	Eff-001 (Composite)	7/22/2020	0.17	μg/L	ND	5	0.17
Cadmium	Inf-001 (Composite)	7/18/2020	0.5	μg/L	J	5	0.17
Cadmium	Inf-001 (Composite)	7/14/2020	0.2	μg/L	J	5	0.17
Cadmium	Inf-001 (Composite)	7/15/2020	0.17	μg/L	ND	5	0.17
Cadmium	Inf-001 (Composite)	7/16/2020	0.17	μg/L	ND	5	0.17
Cadmium	Inf-001 (Composite)	7/17/2020	0.17	μg/L	ND	5	0.17
Cadmium	Inf-001 (Composite)	7/19/2020	0.17	μg/L	ND	5	0.17
Cadmium	Inf-001 (Composite)	7/20/2020	0.17	μg/L	ND	5	0.17
Cadmium	North Collection System (Composite)	7/14/2020	0.17	μg/L	ND	5	0.17
Cadmium	North Collection System (Composite)	7/15/2020	0.4	μg/L	J	5	0.17
Cadmium	North Collection System (Composite)	7/16/2020	0.17	μg/L	ND	5	0.17
Cadmium	North Collection System (Composite)	7/17/2020	0.17	μg/L	ND	5	0.17
Cadmium	North Collection System (Composite)	7/18/2020	0.17	μg/L	ND	5	0.17
Cadmium	North Collection System (Composite)	7/19/2020	0.3	μg/L	J	5	0.17
Cadmium	North Collection System (Composite)	7/20/2020	0.17	μg/L	ND	5	0.17
Cadmium	RAS/WAS	7/17/2020	5	μg/L	J	5	0.17
Cadmium	RAS/WAS (Composite)	7/16/2020	4	μg/L	J	5	0.17
Cadmium	South Collection System (Composite)	7/14/2020	0.17	μg/L	ND	5	0.17
Cadmium	South Collection System (Composite)	7/15/2020	0.17	μg/L	ND	5	0.17
Cadmium	South Collection System (Composite)	7/16/2020	0.17	μg/L	ND	5	0.17
Cadmium	South Collection System (Composite)	7/17/2020	0.17	μg/L	ND	5	0.17
Cadmium	South Collection System (Composite)	7/18/2020	0.17	μg/L	ND	5	0.17
Cadmium	South Collection System (Composite)	7/19/2020	0.17	μg/L	ND	5	0.17
Cadmium	South Collection System (Composite)	7/20/2020	0.17	μg/L	ND	5	0.17
Carbon tetrachloride	Eff-001 (Composite)	7/15/2020	0.44	μg/L	ND	1	0.44
Carbon tetrachloride	Eff-001 (Composite)	7/16/2020	0.44	μg/L	ND	1	0.44
Carbon tetrachloride	Eff-001 (Composite)	7/17/2020	0.44	μg/L	ND	1	0.44
Carbon tetrachloride	Eff-001 (Composite)	7/18/2020	0.44	μg/L	ND	1	0.44
Carbon tetrachloride	Eff-001 (Composite)	7/19/2020	0.44	μg/L	ND	1	0.44
Carbon tetrachloride	Eff-001 (Composite)	7/20/2020	0.44	μg/L	ND	1	0.44
Carbon tetrachloride	Eff-001 (Composite)	7/21/2020	0.44	μg/L	ND	1	0.44
Carbon tetrachloride	Inf-001 (Composite)	7/13/2020	0.44	μg/L	ND	1	0.44
Carbon tetrachloride	Inf-001 (Composite)	7/14/2020	0.44	μg/L	ND	1	0.44
Carbon tetrachloride	Inf-001 (Composite)	7/14/2020	0.44	μg/L	ND	1	0.44
Carbon tetrachloride	Inf-001 (Composite)	7/16/2020	0.44	μg/L	ND	1	0.44
Carbon tetrachloride	Inf-001 (Composite)	7/17/2020	0.44	μg/L	ND	1	0.44
Carbon tetrachloride	Inf-001 (Composite)	7/18/2020	0.44		_	1	
Carbon tetrachloride	Inf-001 (Composite)	7/18/2020	0.44	μg/L μg/L	ND ND	1	0.44
				119/1			0.44

Carbon tetrachloride	North Collection System (Composite)	7/14/2020	0.44	μg/L	ND	1	0.44
Carbon tetrachloride	North Collection System (Composite)	7/15/2020	0.44	μg/L	ND	1	0.44
Carbon tetrachloride	North Collection System (Composite)	7/17/2020	0.44	μg/L	ND	1	0.44
Carbon tetrachloride	North Collection System (Composite)	7/18/2020	0.44	μg/L	ND	1	0.44
Carbon tetrachloride	North Collection System (Composite)	7/19/2020	0.44	μg/L	ND	1	0.44
Carbon tetrachloride	North Collections System (Composite)	7/16/2020	0.44	μg/L	ND	1	0.44
Carbon tetrachloride	South Collection System	7/13/2020	0.44	μg/L	ND	1	0.44
Carbon tetrachloride	South Collection System (Composite)	7/14/2020	0.44	μg/L	ND	1	0.44
Carbon tetrachloride	South Collection System (Composite)	7/15/2020	0.44	μg/L	ND	1	0.44
Carbon tetrachloride	South Collection System (Composite)	7/16/2020	0.44	μg/L	ND	1	0.44
Carbon tetrachloride	South Collection System (Composite)	7/17/2020	0.44	μg/L	ND	1	0.44
Carbon tetrachloride	South Collection System (Composite)	7/18/2020	0.44	μg/L	ND	1	0.44
Carbon tetrachloride	South Collection System (Composite)	7/19/2020	0.44	μg/L	ND	1	0.44
Chromium	Eff-001 (Composite)	7/16/2020	1	μg/L	J	5	0.21
Chromium	Eff-001 (Composite)	7/17/2020	0.7	μg/L	J	5	0.21
Chromium	Eff-001 (Composite)	7/18/2020	1	μg/L	J	5	0.21
Chromium	Eff-001 (Composite)	7/19/2020	1	μg/L	J	5	0.21
Chromium	Eff-001 (Composite)	7/20/2020	1	μg/L	J	5	0.21
Chromium	Eff-001 (Composite)	7/21/2020	0.8	μg/L	J	5	0.21
Chromium	Eff-001 (Composite)	7/22/2020	1	μg/L	J	5	0.21
Chromium	Inf-001 (Composite)	7/18/2020	4	μg/L	J	5	0.21
Chromium	Inf-001 (Composite)	7/14/2020	3	μg/L	J	5	0.21
Chromium	Inf-001 (Composite)	7/15/2020	2	μg/L	J	5	0.21
Chromium	Inf-001 (Composite)	7/16/2020	3	μg/L	J	5	0.21
Chromium	Inf-001 (Composite)	7/17/2020	3	μg/L	J	5	0.21
Chromium	Inf-001 (Composite)	7/19/2020	3	μg/L	J	5	0.21
Chromium	Inf-001 (Composite)	7/20/2020	3	μg/L	J	5	0.21
Chromium	North Collection System (Composite)	7/14/2020	2	μg/L	J	5	0.21
Chromium	North Collection System (Composite)	7/15/2020	4	μg/L	J	5	0.21
Chromium	North Collection System (Composite)	7/16/2020	2	μg/L	J	5	0.21
Chromium	North Collection System (Composite)	7/17/2020	2	μg/L	J	5	0.21
Chromium	North Collection System (Composite)	7/18/2020	2	μg/L	J	5	0.21
Chromium	North Collection System (Composite)	7/19/2020	3	μg/L	J	5	0.21
Chromium	North Collection System (Composite)	7/20/2020	3	μg/L	J	5	0.21
Chromium	RAS/WAS	7/17/2020	48	μg/L		5	0.21
Chromium	RAS/WAS (Composite)	7/16/2020	44	μg/L		5	0.21
Chromium	South Collection System (Composite)	7/14/2020	2	μg/L	J	5	0.21
Chromium	South Collection System (Composite)	7/15/2020	2	μg/L	J	5	0.21
Chromium	South Collection System (Composite)	7/16/2020	3	μg/L	J	5	0.21
Chromium	South Collection System (Composite)	7/17/2020	2	μg/L	J	5	0.21
Chromium	South Collection System (Composite)	7/18/2020	2	μg/L	J	5	0.21
Chromium	South Collection System (Composite)	7/19/2020	2	μg/L	J	5	0.21
Chromium	South Collection System (Composite)	7/20/2020	2	μg/L	J	5	0.21
Copper	Eff-001 (Composite)	7/16/2020	8.0	μg/L		5	0.72
Copper	Eff-001 (Composite)	7/17/2020	8.6	μg/L		5	0.72
Copper	Eff-001 (Composite)	7/18/2020	8.5	μg/L		5	0.72
Copper	Eff-001 (Composite)	7/19/2020	8.3	μg/L		5	0.72
Copper	Eff-001 (Composite)	7/20/2020	8.3	μg/L		5	0.72
Copper	Eff-001 (Composite)	7/21/2020	8.1	μg/L		5	0.72
Copper	Eff-001 (Composite)	7/22/2020	7.8	μg/L		5	0.72
Copper	Inf-001 (Composite)	7/18/2020	150	μg/L		5	0.72
Copper	Inf-001 (Composite)	7/18/2020	120	μg/L	_	5	0.72

Copper	Inf-001 (Composite)	7/15/2020	130	μg/L		5	0.72
Copper	Inf-001 (Composite)	7/16/2020	130	μg/L		5	0.72
Copper	Inf-001 (Composite)	7/17/2020	130	μg/L		5	0.72
Copper	Inf-001 (Composite)	7/19/2020	120	μg/L		5	0.72
Copper	Inf-001 (Composite)	7/20/2020	130	μg/L		5	0.72
Copper	North Collection System (Composite)	7/14/2020	100	μg/L		5	0.72
Copper	North Collection System (Composite)	7/15/2020	160	μg/L		5	0.72
Copper	North Collection System (Composite)	7/16/2020	120	μg/L		5	0.72
Copper	North Collection System (Composite)	7/17/2020	94	μg/L		5	0.72
Copper	North Collection System (Composite)	7/18/2020	95	μg/L		5	0.72
Copper	North Collection System (Composite)	7/19/2020	150	μg/L		5	0.72
Copper	North Collection System (Composite)	7/20/2020	120	μg/L		5	0.72
Copper	RAS/WAS	7/17/2020	3400	μg/L		5	0.72
Copper	RAS/WAS (Composite)	7/16/2020	3000	μg/L		5	0.72
Copper	South Collection System (Composite)	7/14/2020	93	μg/L		5	0.72
Copper	South Collection System (Composite)	7/15/2020	110	μg/L		5	0.72
Copper	South Collection System (Composite)	7/16/2020	99	μg/L		5	0.72
Copper	South Collection System (Composite)	7/17/2020	88	μg/L		5	0.72
Copper	South Collection System (Composite)	7/18/2020	80	μg/L		5	0.72
Copper	South Collection System (Composite)	7/19/2020	110	μg/L		5	0.72
Copper	South Collection System (Composite)	7/20/2020	100	μg/L		5	0.72
Diethylhexyl phthalate	Eff-001 (Composite)	7/16/2020	1.5	μg/L	ND	4	1.5
Diethylhexyl phthalate	Eff-001 (Composite)	7/17/2020	1.5	μg/L	ND	4	1.5
Diethylhexyl phthalate	Eff-001 (Composite)	7/18/2020	1.5	μg/L	ND	4	1.5
Diethylhexyl phthalate	Eff-001 (Composite)	7/19/2020	1.5	μg/L	ND	4	1.5
Diethylhexyl phthalate	Eff-001 (Composite)	7/20/2020	1.5	μg/L	ND	4	1.5
Diethylhexyl phthalate	Eff-001 (Composite)	7/20/2020	1.5	μg/L	ND	4	1.5
Diethylhexyl phthalate	Eff-001 (Composite)	7/22/2020	1.5	μg/L	ND	4	1.5
Diethylhexyl phthalate	Inf-001 (Composite)	7/18/2020	5.7	μg/L		4	1.5
Diethylhexyl phthalate	Inf-001 (Composite)	7/18/2020	4.9	μg/L		4	1.5
Diethylhexyl phthalate	Inf-001 (Composite)	7/14/2020	4.5	μg/L		4	1.5
Diethylhexyl phthalate	Inf-001 (Composite)	7/16/2020	4.2			4	1.5
Diethylhexyl phthalate	Inf-001 (Composite)	7/17/2020	2	μg/L	1	4	1.5
Diethylhexyl phthalate	Inf-001 (Composite)	7/19/2020	4.2	μg/L	J	4	1.5
Diethylhexyl phthalate	Inf-001 (Composite)	7/20/2020	4.2	μg/L		4	1.5
Diethylhexyl phthalate	North Collection System (Composite)	7/14/2020	5.9	μg/L		4	
Diethylhexyl phthalate	North Collection System (Composite)	7/14/2020	4.1	μg/L			1.5
Diethylhexyl phthalate	North Collection System (Composite)	7/16/2020		μg/L	J	4	1.5
			3	μg/L			1.5
Diethylhexyl phthalate	North Collection System (Composite)	7/17/2020	2	μg/L	J	4	1.5
Diethylhexyl phthalate	North Collection System (Composite)	7/18/2020	5.6	μg/L	_	4	1.5
Diethylhexyl phthalate	North Collection System (Composite)	7/19/2020	4.4	μg/L		4	1.5
Diethylhexyl phthalate	North Collection System (Composite)	7/20/2020	1.5	μg/L	ND	4	1.5
Diethylhexyl phthalate	South Collection System (Composite)	7/14/2020	16	μg/L		4	1.5
Diethylhexyl phthalate	South Collection System (Composite)	7/15/2020	12	μg/L		4	1.5
Diethylhexyl phthalate	South Collection System (Composite)	7/16/2020	11	μg/L		4	1.5
Diethylhexyl phthalate	South Collection System (Composite)	7/17/2020	2	μg/L	J	4	1.5
Diethylhexyl phthalate	South Collection System (Composite)	7/18/2020	6.0	μg/L		4	1.5
Diethylhexyl phthalate	South Collection System (Composite)	7/19/2020	5.2	μg/L		4	1.5
Diethylhexyl phthalate	South Collection System (Composite)	7/20/2020	1.5	μg/L	ND	4	1.5
Lead	Eff-001 (Composite)	7/16/2020	0.2	μg/L	J	5	0.08
Lead	Eff-001 (Composite)	7/17/2020	0.3	μg/L	J	5	0.08
Lead	Eff-001 (Composite)	7/18/2020	0.3	μg/L	J	5	0.08

0.2	μg/L	J	5	0.08
0.2	μg/L	J	5	0.08
0.082	μg/L	ND	5	0.08
0.082	μg/L	ND	5	0.08
3	μg/L	J	5	0.08
2	μg/L	J	5	0.08
2	μg/L	J	5	0.08
2	μg/L	J	5	0.08
2	μg/L	J	5	0.08
1	μg/L	J	5	0.08
2	μg/L	J	5	0.08
1	μg/L	J	5	0.08
2	μg/L	J	5	0.08
0.9	μg/L		5	0.08
2	μg/L		5	0.08
1	μg/L		5	0.08
2	μg/L		5	0.08
1	μg/L		5	0.08
41	μg/L		5	0.08
34	μg/L		5	0.08
1	μg/L		5	0.08
2	μg/L		5	0.08
1	μg/L		5	0.08
1	μg/L		5	0.08
1	μg/L	J	5	0.08
1	μg/L	J	5	0.08
1	μg/L		5	0.08
0.26	μg/L		1	0.26
0.26	μg/L		1	0.26
0.26	μg/L	ND	1	0.26
0.26	μg/L	ND	1	0.26
0.26	μg/L	_	1	0.26
0.26	μg/L	ND	1	0.26
0.26	μg/L	ND	1	0.26
0.26	μg/L		1	0.26
0.26	μg/L	_	1	0.26
0.26	μg/L		1	0.26
0.26	μg/L		1	0.26
0.26	μg/L		1	0.26
0.26	μg/L		1	0.26
0.26	μg/L		1	0.26
0.26	μg/L		1	0.26
0.20	μg/L		1	0.20
0.20			1	0.20
	μg/L		1	0.20
0.26	μg/L		1	0.26
	μg/L		_	0.26
	μg/L		1	
0.26	μg/L		1	0.26
			_	0.26
			_	0.26
				0.26
(1.2 0.26 0.26 0.26	0.26 μg/L 0.26 μg/L	0.26 μg/L ND 0.26 μg/L ND	0.26 μg/L ND 1 0.26 μg/L ND 1

Mercury	South Collection System (Composite)	7/16/2020	0.26	μg/L	ND	1	0.26
Mercury	South Collection System (Composite)	7/17/2020	0.26	μg/L	ND	1	0.26
Mercury	South Collection System (Composite)	7/18/2020	0.26	μg/L	ND	1	0.26
Mercury	South Collection System (Composite)	7/19/2020	0.26	μg/L	ND	1	0.26
Mercury	South Collection System (Composite)	7/20/2020	0.26	μg/L	ND	1	0.26
Molybdenum	Eff-001 (Composite)	7/16/2020	0.5	μg/L	J	5	0.06
Molybdenum	Eff-001 (Composite)	7/17/2020	0.7	μg/L	J	5	0.06
Molybdenum	Eff-001 (Composite)	7/18/2020	0.7	μg/L	J	5	0.06
Molybdenum	Eff-001 (Composite)	7/19/2020	0.5	μg/L	J	5	0.06
Molybdenum	Eff-001 (Composite)	7/20/2020	0.5	μg/L	J	5	0.06
Molybdenum	Eff-001 (Composite)	7/21/2020	0.4	μg/L	J	5	0.06
Molybdenum	Eff-001 (Composite)	7/22/2020	0.5	μg/L	J	5	0.06
Molybdenum	Inf-001 (Composite)	7/18/2020	2	μg/L	J	5	0.06
Molybdenum	Inf-001 (Composite)	7/14/2020	2	μg/L	J	5	0.06
Molybdenum	Inf-001 (Composite)	7/15/2020	2	μg/L	J	5	0.06
Molybdenum	Inf-001 (Composite)	7/16/2020	1	μg/L	J	5	0.06
Molybdenum	Inf-001 (Composite)	7/17/2020	1	μg/L	J	5	0.06
Molybdenum	Inf-001 (Composite)	7/19/2020	1	μg/L	J	5	0.06
Molybdenum	Inf-001 (Composite)	7/20/2020	1	μg/L	J	5	0.06
Molybdenum	North Collection System (Composite)	7/14/2020	2	μg/L	J	5	0.06
Molybdenum	North Collection System (Composite)	7/15/2020	3	μg/L	J	5	0.00
Molybdenum	North Collection System (Composite)	7/16/2020	1	μg/L	J	5	0.00
Molybdenum	North Collection System (Composite)	7/17/2020	1	μg/L	J	5	0.00
Molybdenum	North Collection System (Composite)	7/18/2020	1	μg/L	J	5	0.00
Molybdenum	North Collection System (Composite)	7/18/2020	2		1	5	0.06
Molybdenum	North Collection System (Composite)	7/20/2020	1	μg/L μg/L	1	5	0.06
Molybdenum	RAS/WAS	7/17/2020	24		1	5	0.06
· ·	RAS/WAS RAS/WAS (Composite)	7/16/2020	22	μg/L		5	0.06
Molybdenum			_	μg/L	1	_	
Molybdenum	South Collection System (Composite)	7/14/2020	1	μg/L	J	5	0.06
Molybdenum	South Collection System (Composite)	7/15/2020	1	μg/L	J	5	0.06
Molybdenum	South Collection System (Composite)	7/16/2020	0.9	μg/L	J	5	0.06
Molybdenum	South Collection System (Composite)	7/17/2020	1	μg/L	J	5	0.06
Molybdenum	South Collection System (Composite)	7/18/2020	0.9	μg/L	J	5	0.06
Molybdenum	South Collection System (Composite)	7/19/2020	1	μg/L	J	5	0.06
Molybdenum	South Collection System (Composite)	7/20/2020	1	μg/L	J	5	0.06
Nickel	Eff-001 (Composite)	7/16/2020	2	μg/L	J	5	1.1
Nickel	Eff-001 (Composite)	7/17/2020	2	μg/L	J	5	1.1
Nickel	Eff-001 (Composite)	7/18/2020	2	μg/L	J	5	1.1
Nickel	Eff-001 (Composite)	7/19/2020	2	μg/L	J	5	1.1
Nickel	Eff-001 (Composite)	7/20/2020	2	μg/L	J	5	1.1
Nickel	Eff-001 (Composite)	7/21/2020	2	μg/L	J	5	1.1
Nickel	Eff-001 (Composite)	7/22/2020	2	μg/L	J	5	1.1
Nickel	Inf-001 (Composite)	7/18/2020	5.5	μg/L		5	1.1
Nickel	Inf-001 (Composite)	7/14/2020	5	μg/L	J	5	1.1
Nickel	Inf-001 (Composite)	7/15/2020	5	μg/L	J	5	1.1
Nickel	Inf-001 (Composite)	7/16/2020	5	μg/L	J	5	1.1
Nickel	Inf-001 (Composite)	7/17/2020	5	μg/L	J	5	1.1
Nickel	Inf-001 (Composite)	7/19/2020	4	μg/L	J	5	1.1
Nickel	Inf-001 (Composite)	7/20/2020	4	μg/L	J	5	1.1
Nickel	North Collection System (Composite)	7/14/2020	3	μg/L	J	5	1.1
Nickel	North Collection System (Composite)	7/15/2020	6.5	μg/L		5	1.1
Nickel	North Collection System (Composite)	7/16/2020	4	μg/L	J	5	1.1

Nickel	North Collection System (Composite)	7/17/2020	6.5	μg/L		5	1.1
Nickel	North Collection System (Composite)	7/18/2020	4	μg/L	J	5	1.1
Nickel	North Collection System (Composite)	7/19/2020	6.7	μg/L		5	1.1
Nickel	North Collection System (Composite)	7/20/2020	4	μg/L	J	5	1.1
Nickel	RAS/WAS	7/17/2020	58	μg/L		5	1.1
Nickel	RAS/WAS (Composite)	7/16/2020	50	μg/L		5	1.1
Nickel	South Collection System (Composite)	7/14/2020	3	μg/L	J	5	1.1
Nickel	South Collection System (Composite)	7/15/2020	4	μg/L	J	5	1.1
Nickel	South Collection System (Composite)	7/16/2020	4	μg/L	J	5	1.1
Nickel	South Collection System (Composite)	7/17/2020	3	μg/L	J	5	1.1
Nickel	South Collection System (Composite)	7/18/2020	3	μg/L	J	5	1.1
Nickel	South Collection System (Composite)	7/19/2020	3	μg/L	J	5	1.1
Nickel	South Collection System (Composite)	7/20/2020	4	μg/L	J	5	1.1
Non-Filterable Residue(TSS)	Eff-001 (Composite)	7/16/2020	1.4	mg/L	-	1	0.6
Non-Filterable Residue(TSS)	Eff-001 (Composite)	7/17/2020	1.4	mg/L		1	0.6
Non-Filterable Residue(TSS)	Eff-001 (Composite)	7/18/2020	0.8	mg/L	J	1	0.6
Non-Filterable Residue(TSS)	Eff-001 (Composite)	7/19/2020	1.8	mg/L	-	1	0.6
Non-Filterable Residue(TSS)	Eff-001 (Composite)	7/20/2020	1.4	mg/L		1	0.6
Non-Filterable Residue(TSS)	Eff-001 (Composite)	7/21/2020	1	mg/L		1	0.6
Non-Filterable Residue(TSS)	Eff-001 (Composite)	7/22/2020	1.4	mg/L		1	0.6
Non-Filterable Residue(TSS)	Inf-001 (Composite)	7/18/2020	280	mg/L		1	0.6
Non-Filterable Residue(TSS)	Inf-001 (Composite)	7/14/2020	320	mg/L		1	0.6
Non-Filterable Residue(TSS)	Inf-001 (Composite)	7/15/2020	310	mg/L		1	0.6
Non-Filterable Residue(TSS)	Inf-001 (Composite)	7/16/2020	310	mg/L		1	0.6
Non-Filterable Residue(TSS)	Inf-001 (Composite)	7/17/2020	310	mg/L		1	0.6
Non-Filterable Residue(TSS)	Inf-001 (Composite)	7/19/2020	290	mg/L		1	0.6
Non-Filterable Residue(TSS)	Inf-001 (Composite)	7/20/2020	240	mg/L		1	0.6
Non-Filterable Residue(TSS)	North Collection System (Composite)	7/14/2020	98	mg/L		1	0.6
Non-Filterable Residue(TSS)	North Collection System (Composite)	7/15/2020	470	mg/L		1	0.6
Non-Filterable Residue(TSS)	North Collection System (Composite)	7/16/2020	180	mg/L		1	0.6
Non-Filterable Residue(TSS)	North Collection System (Composite)	7/17/2020	80	mg/L		1	0.6
Non-Filterable Residue(TSS)	North Collection System (Composite)	7/18/2020	73	mg/L		1	0.6
Non-Filterable Residue(TSS)	North Collection System (Composite)	7/19/2020	500	mg/L		1	0.6
Non-Filterable Residue(TSS)	North Collection System (Composite)	7/20/2020	210	mg/L		1	0.6
Non-Filterable Residue(TSS)	North Collection System (Composite)	7/20/2020	210	mg/L		1	0.6
Non-Filterable Residue(TSS)	South Collection System (Composite)	7/14/2020	160	mg/L		1	0.6
Non-Filterable Residue(TSS)	South Collection System (Composite)		220				0.6
Non-Filterable Residue(TSS)	South Collection System (Composite)	7/15/2020	140	mg/L		1	
. ,		7/16/2020	70	mg/L		1	0.6
Non-Filterable Residue(TSS)	South Collection System (Composite) South Collection System (Composite)	7/17/2020	_	mg/L		1	0.6
Non-Filterable Residue(TSS)	· · · · · ·	7/17/2020	70	mg/L		1	0.6
Non-Filterable Residue(TSS)	South Collection System (Composite)	7/18/2020	54	mg/L		1	0.6
Non-Filterable Residue(TSS)	South Collection System (Composite)	7/19/2020	210	mg/L		1	0.6
Non-Filterable Residue(TSS)	South Collection System (Composite)	7/20/2020	180	mg/L		1	0.6
Selenium	Eff-001 (Composite)	7/16/2020	4	μg/L	ND	10	4
Selenium	Eff-001 (Composite)	7/17/2020	4	μg/L	ND	10	4
Selenium	Eff-001 (Composite)	7/18/2020	4	μg/L	ND	10	4
Selenium	Eff-001 (Composite)	7/19/2020	4	μg/L	ND	10	4
Selenium	Eff-001 (Composite)	7/20/2020	4	μg/L	ND	10	4
Selenium	Eff-001 (Composite)	7/21/2020	4	μg/L	ND	10	4
Selenium	Eff-001 (Composite)	7/22/2020	4	μg/L	ND	10	4
Selenium	Inf-001 (Composite)	7/18/2020	4	μg/L	ND	10	4
Selenium	Inf-001 (Composite)	7/14/2020	4	μg/L	ND	10	4

Selenium	Inf-001 (Composite)	7/15/2020	4	μg/L	ND	10	4
Selenium	Inf-001 (Composite)	7/16/2020	4	μg/L	ND	10	4
Selenium	Inf-001 (Composite)	7/17/2020	4	μg/L	ND	10	4
Selenium	Inf-001 (Composite)	7/19/2020	4	μg/L	ND	10	4
Selenium	Inf-001 (Composite)	7/20/2020	4	μg/L	ND	10	4
Selenium	North Collection System (Composite)	7/14/2020	4	μg/L	ND	10	4
Selenium	North Collection System (Composite)	7/15/2020	4	μg/L	ND	10	4
Selenium	North Collection System (Composite)	7/16/2020	4	μg/L	ND	10	4
Selenium	North Collection System (Composite)	7/17/2020	4	μg/L	ND	10	4
Selenium	North Collection System (Composite)	7/18/2020	4	μg/L	ND	10	4
Selenium	North Collection System (Composite)	7/19/2020	4	μg/L	ND	10	4
Selenium	North Collection System (Composite)	7/20/2020	4	μg/L	ND	10	4
Selenium	RAS/WAS	7/17/2020	23	μg/L		10	4
Selenium	RAS/WAS (Composite)	7/16/2020	19	μg/L		10	4
Selenium	South Collection System (Composite)	7/14/2020	4	μg/L	ND	10	4
Selenium	South Collection System (Composite)	7/15/2020	4	μg/L	ND	10	4
Selenium	South Collection System (Composite)	7/16/2020	4	μg/L	ND	10	4
Selenium	South Collection System (Composite)	7/17/2020	4	μg/L	ND	10	4
Selenium	South Collection System (Composite)	7/18/2020	4	μg/L	ND	10	4
Selenium	South Collection System (Composite)	7/19/2020	4	μg/L	ND	10	4
Selenium	South Collection System (Composite)	7/20/2020	4	μg/L	ND	10	4
Silver	Eff-001 (Composite)	7/16/2020	0.35	μg/L	ND	10	0.35
Silver	Eff-001 (Composite)	7/17/2020	0.35	μg/L	ND	10	0.35
Silver	Eff-001 (Composite)	7/18/2020	0.35	μg/L	ND	10	0.35
Silver	Eff-001 (Composite)	7/19/2020	0.4	μg/L	1	10	0.35
Silver	Eff-001 (Composite)	7/20/2020	0.35	μg/L	ND	10	0.35
Silver	Eff-001 (Composite)	7/21/2020	0.35	μg/L	ND	10	0.35
Silver	Eff-001 (Composite)	7/22/2020	0.35	μg/L	ND	10	0.35
Silver	Inf-001 (Composite)	7/18/2020	0.6	μg/L	J	10	0.35
Silver	Inf-001 (Composite)	7/14/2020	0.35	μg/L	ND	10	0.35
Silver	Inf-001 (Composite)	7/15/2020	0.35	μg/L	ND	10	0.35
Silver	Inf-001 (Composite)	7/16/2020	0.35	μg/L	ND	10	0.35
Silver	Inf-001 (Composite)	7/17/2020	0.5	μg/L	J	10	0.35
Silver	Inf-001 (Composite)	7/19/2020	0.4	μg/L	1	10	0.35
Silver	Inf-001 (Composite)	7/20/2020	0.35	μg/L	ND	10	0.35
Silver	North Collection System (Composite)	7/14/2020	0.35	μg/L	ND	10	0.35
Silver	North Collection System (Composite)	7/15/2020	0.7	μg/L	J	10	0.35
Silver	North Collection System (Composite)	7/16/2020	0.35	μg/L	ND	10	0.35
Silver	North Collection System (Composite)	7/17/2020	0.35	μg/L	ND	10	0.35
Silver	North Collection System (Composite)	7/18/2020	0.35	μg/L	ND	10	0.35
Silver	North Collection System (Composite)	7/19/2020	0.4	μg/L	J	10	0.35
Silver	North Collection System (Composite)	7/20/2020	0.35	μg/L	ND	10	0.35
Silver	RAS/WAS	7/17/2020	9	μg/L	J	10	0.35
Silver	RAS/WAS (Composite)	7/16/2020	8	μg/L	J	10	0.35
Silver	South Collection System (Composite)	7/14/2020	0.35	μg/L	ND	10	0.35
Silver	South Collection System (Composite)	7/14/2020	0.35	μg/L	ND	10	0.35
Silver	South Collection System (Composite)	7/16/2020	0.35	μg/L	ND	10	0.35
Silver	South Collection System (Composite)	7/17/2020	0.35	μg/L	ND	10	0.35
Silver	South Collection System (Composite)	7/18/2020	0.35	μg/L	ND	10	0.35
Silver	South Collection System (Composite)	7/19/2020	0.35	μg/L	J	10	0.35
Silver	South Collection System (Composite)	7/20/2020	0.4	μg/L	ND	10	0.35
0.1701	Eff-001 (Composite)	,,20,2020	0.55	µ6/ ∟		10	0.00

Zinc	Eff-001 (Composite)	7/17/2020	55	μg/L	10	1.1
Zinc	Eff-001 (Composite)	7/18/2020	53	μg/L	10	1.1
Zinc	Eff-001 (Composite)	7/19/2020	49	μg/L	10	1.1
Zinc	Eff-001 (Composite)	7/20/2020	50	μg/L	10	1.1
Zinc	Eff-001 (Composite)	7/21/2020	52	μg/L	10	1.1
Zinc	Eff-001 (Composite)	7/22/2020	54	μg/L	10	1.1
Zinc	Inf-001 (Composite)	7/18/2020	240	μg/L	10	1.1
Zinc	Inf-001 (Composite)	7/14/2020	190	μg/L	10	1.1
Zinc	Inf-001 (Composite)	7/15/2020	190	μg/L	10	1.1
Zinc	Inf-001 (Composite)	7/16/2020	170	μg/L	10	1.1
Zinc	Inf-001 (Composite)	7/17/2020	170	μg/L	10	1.1
Zinc	Inf-001 (Composite)	7/19/2020	170	μg/L	10	1.1
Zinc	Inf-001 (Composite)	7/20/2020	190	μg/L	10	1.1
Zinc	North Collection System (Composite)	7/14/2020	120	μg/L	10	1.1
Zinc	North Collection System (Composite)	7/15/2020	410	μg/L	10	1.1
Zinc	North Collection System (Composite)	7/16/2020	130	μg/L	10	1.1
Zinc	North Collection System (Composite)	7/17/2020	120	μg/L	10	1.1
Zinc	North Collection System (Composite)	7/18/2020	100	μg/L	10	1.1
Zinc	North Collection System (Composite)	7/19/2020	390	μg/L	10	1.1
Zinc	North Collection System (Composite)	7/20/2020	160	μg/L	10	1.1
Zinc	RAS/WAS	7/17/2020	2700	μg/L	10	1.1
Zinc	RAS/WAS (Composite)	7/16/2020	2500	μg/L	10	1.1
Zinc	South Collection System (Composite)	7/14/2020	110	μg/L	10	1.1
Zinc	South Collection System (Composite)	7/15/2020	150	μg/L	10	1.1
Zinc	South Collection System (Composite)	7/16/2020	100	μg/L	10	1.1
Zinc	South Collection System (Composite)	7/17/2020	100	μg/L	10	1.1
Zinc	South Collection System (Composite)	7/18/2020	82	μg/L	10	1.1
Zinc	South Collection System (Composite)	7/19/2020	130	μg/L	10	1.1
Zinc	South Collection System (Composite)	7/20/2020	130	μg/L	10	1.1

ANALYTE	SAMPLENAME	SAMPDATE	RESULT	UNITS	QUAL	RL	MDL
Arsenic	Eff-001 (Composite)	7/16/2020	1.5	μg/L	ND	5	1.5
Arsenic	Eff-001 (Composite)	7/17/2020	1.5	μg/L	ND	5	1.5
Arsenic	Eff-001 (Composite)	7/18/2020	1.5	μg/L	ND	5	1.5
Arsenic	Eff-001 (Composite)	7/19/2020	1.5	μg/L	ND	5	1.5
Arsenic	Eff-001 (Composite)	7/20/2020	1.5	μg/L	ND	5	1.5
Arsenic	Eff-001 (Composite)	7/21/2020	1.5	μg/L	ND	5	1.5
Arsenic	Eff-001 (Composite)	7/22/2020	1.5	μg/L	ND	5	1.5
Arsenic	Inf-001 (Composite)	7/18/2020	1.5	μg/L	ND	5	1.5
Arsenic	Inf-001 (Composite)	7/14/2020	1.5	μg/L	ND	5	1.5
Arsenic	Inf-001 (Composite)	7/15/2020	1.5	μg/L	ND	5	1.5
Arsenic	Inf-001 (Composite)	7/16/2020	1.5	μg/L	ND	5	1.5
Arsenic	Inf-001 (Composite)	7/17/2020	1.5	μg/L	ND	5	1.5
Arsenic	Inf-001 (Composite)	7/19/2020	1.5	μg/L	ND	5	1.5
Arsenic	Inf-001 (Composite)	7/20/2020	1.5	μg/L	ND	5	1.5
Arsenic	North Collection System (Composite)	7/14/2020	1.5	μg/L	ND	5	1.5
Arsenic	North Collection System (Composite)	7/15/2020	1.5	μg/L	ND	5	1.5
Arsenic	North Collection System (Composite)	7/16/2020	1.5	μg/L	ND	5	1.5
Arsenic	North Collection System (Composite)	7/17/2020	2	μg/L	J	5	1.5
Arsenic	North Collection System (Composite)	7/18/2020	2	μg/L	J	5	1.5
Arsenic	North Collection System (Composite)	7/19/2020	1.5	μg/L	ND	5	1.5
Arsenic	North Collection System (Composite)	7/20/2020	1.5	μg/L	ND	5	1.5
Arsenic	RAS/WAS	7/17/2020	12	μg/L		5	1.5
Arsenic	RAS/WAS (Composite)	7/16/2020	11	μg/L		5	1.5
Arsenic	South Collection System (Composite)	7/14/2020	1.5	μg/L	ND	5	1.5
Arsenic	South Collection System (Composite)	7/15/2020	1.5	μg/L	ND	5	1.5
Arsenic	South Collection System (Composite)	7/16/2020	2	μg/L	J	5	1.5
Arsenic	South Collection System (Composite)	7/17/2020	- 1.5	μg/L	ND	5	1.5
Arsenic	South Collection System (Composite)	7/18/2020	1.5	μg/L	ND	5	1.5
Arsenic	South Collection System (Composite)	7/19/2020	1.5	μg/L	ND	5	1.5
Arsenic	South Collection System (Composite)	7/20/2020	1.5	μg/L	ND	5	1.5
Biochemical Oxygen Demand	Eff-001 (Composite)	7/16/2020	7.3	mg/L		2	2
Biochemical Oxygen Demand	Eff-001 (Composite)	7/17/2020	6.2	mg/L		2	2
Biochemical Oxygen Demand	Eff-001 (Composite)	7/18/2020	5.0	mg/L		2	2
Biochemical Oxygen Demand	Eff-001 (Composite)	7/19/2020	5.8	mg/L		2	2
Biochemical Oxygen Demand	Eff-001 (Composite)	7/20/2020	4.8	mg/L		2	2
Biochemical Oxygen Demand	Eff-001 (Composite)	7/21/2020	5.1	mg/L		2	2
Biochemical Oxygen Demand	Eff-001 (Composite)	7/22/2020	4.2	mg/L		2	2
Biochemical Oxygen Demand	Inf-001 (Composite)	7/14/2020	480	mg/L		2	2
Biochemical Oxygen Demand	Inf-001 (Composite)	7/15/2020	520	mg/L		2	2
Biochemical Oxygen Demand	Inf-001 (Composite)	7/16/2020	640	mg/L		2	2
Biochemical Oxygen Demand	Inf-001 (Composite)	7/17/2020	540	mg/L		2	2
Biochemical Oxygen Demand	Inf-001 (Composite)	7/18/2020	370	1		2	2
	Inf-001 (Composite)	7/19/2020		mg/L		2	
Biochemical Oxygen Demand	· · · ·		440	mg/L			2
Biochemical Oxygen Demand	Inf-001 (Composite) North Collection System (Composite)	7/20/2020	320 360	mg/L		2 2	2
Biochemical Oxygen Demand				mg/L			
Biochemical Oxygen Demand	North Collection System (Composite)	7/15/2020	1200	mg/L		2	2
Biochemical Oxygen Demand	North Collection System (Composite)	7/16/2020	300	mg/L		2	
Biochemical Oxygen Demand	North Collection System (Composite)	7/17/2020	270	mg/L		2	2
Biochemical Oxygen Demand	North Collection System (Composite)	7/18/2020	210	mg/L		2	2
Biochemical Oxygen Demand	North Collection System (Composite)	7/19/2020	840	mg/L		2	2
Biochemical Oxygen Demand	North Collection System (Composite)	7/20/2020	390	mg/L		2	2

APPENDIX B

REGION 5 EPA SPREADSHEET MODEL

		Local Limits D	etermination Ba	ased on NPDES Mo	nthly Average Ef	ffluent Limits						
	ENVIRONM	ENTAL CRITE	RIA AND PRO	CESS DATA BASE			MAXIMUM LC	ADING	INDUSTRI	AL		
	IU Pollut.	POTW	Removal	NPDES	Domestic and	d Commercial	Allowable	Domestic/	Allowable	Local	Safety	Safety
Pollutant	Flow	Flow	Efficiency	Monthly Ave Limit	Conc.	Flow	Headworks	Commercial	Loading	Limit	Factor	Factor
	(MGD)	(MGD)	(%)	(mg/l)	(mg/l)	(MGD)	(lbs/day)	(lbs/day)	(lbs/day)	(mg/l)	(%)	Pounds
	(Qind)	(Qpotw)	(Rpotw)	(Ccrit)	(Cdom)	(Qdom)	(Lhw)	(Ldom)	(Lind)	(Cind)	(SF)	(SFP)
BOD	0.019	0.858	98.810	30	311.00	0.839	18040	2176	14060	88726	10	1804
TSS	0.019	0.858	99.950	30	138.00	0.839	429343	966	385443	2432433	10	42934
(Rpotw) (Ccrit) (Qdom) (Cdom) (Lhw) (Lind) (Cind) (SF) 8.34 Lhw =	Domestic/com Domestic/com Maximum allov Domestic/com	naximum perm mercial backgru mercial backgru vable headworf mercial backgru vable industrial able local limit s a percent. n factor	it limit for a part ound flow in MC ound concentra ks pollutant loa ound loading to loading to the	icular pollutant in m GD. dition for a particular ding to the POTW in the POTW for a pa POTW in pounds pe	pollutant in mg/l. pounds per day rticular pollutant	(lbs/day).		stem")				
	1 - Rpotw	potw										

	ENVIRON	MENTAL C	RITERIA AND	PROCESS DATA I	BASE		MAXIMUM LC	DADING	INDUSTRIAL			
	IU Pollut.	POTW	Removal	NPDES	Domestic and	Commercial	Allowable	Domestic/	Allowable	Local	Safety	Safety
Pollutant	Flow	Flow	Efficiency	Daily Limit	Conc.	Flow	Headworks	Commercial	Loading	Limit	Factor	Factor
	(MGD)	(MGD)	(%)	(mg/l)	(mg/l)	(MGD)	(lbs/day)	(lbs/day)	(lbs/day)	(mg/l)	(%)	pounds
	(Qind)	(Qpotw)	(Rpotw)	(Ccrit)	(Cdom)	(Qdom)	(Lhw)	(Ldom)	(Lind)	(Cind)	(SF)	(SFP)
BOD	0.019	0.858	98.810	30	311.00	0.839	4569	2176	1936	12217	10	457
TSS	0.019	0.858	99.950	30	138.00	0.839	5664	966	4132	26076	10	566
(Rpotw)	Removal eff	erage influer iciency acro	nt flow in MGD ss POTW as p	over the 7 day sam	pling period	at contains a parti	cular polititant.					
(Qpotw) (Rpotw) (Ccrit) (Qdom) (Cdom) (Lhw) (Lind) (Cind) (SF)	Removal eff NPDES dail Domestic/cc Domestic/cc Maximum al Domestic/cc Maximum al Industrial all Safety facto	erage influer iciency acro y maximum pommercial ba nomercial ba lowable hea pommercial ba lowable indu owable local r as a perce	nt flow in MGD ss POTW as p permit limit for ackground flow ackground cow dworks polluta ackground loac ustrial loading to I limit for a give	over the 7 day sam ercent. a particular pollutar	pling period It in mg/l. Iicular pollutant in r DTW in pounds per or a particular pollu	ng/l. day (lbs/day) Ke	nnedy/Jenks Cor	nsultants 2030 M	aximum Monthly I	oading Capa	acity.	
(Corit) (Cdom) (Cdom) (Cdom) (Lhw) (Ldom) (Lind) (Cind)	Removal eff NPDES dail Domestic/cc Domestic/cc Maximum al Domestic/cc Maximum al Industrial all	erage influer iciency acro y maximum mmercial ba mmercial ba lowable hea nommercial ba lowable indu owable local r as a perce sion factor	nt flow in MGD ss POTW as p permit limit for ackground flow ackground cow dworks polluta ackground loac ustrial loading to I limit for a give	over the 7 day sam ercent. a particular pollutar in MGD. centration for a part in loading to the PC ling to the POTW to b the POTW in poul	pling period It in mg/l. Iicular pollutant in r DTW in pounds per or a particular pollu	ng/l. day (lbs/day) Ke	nnedy/Jenks Cor	nsultants 2030 M	aximum Monthly I	oading Capa	acity.	

	ENV			nation Based on USEF A AND PROCESS DA		Regulations			MAXIMUM LO	ADING	IND	USTRIAL		
Pollutant	IU Pollut. Flow (MGD) (Qind)	Flow (MGD)	Sludge Flow (MGD) (Qsldg)	Percent Solids (%) (PS)	Removal Efficiency (%) (Rpotw)	503 Sludge Criteria (mg/kg) (Cslcrit)	Domestic and Conc. (mg/l) (Cdom)	Commercial Flow (MGD) (Qdom)	Allowable Headworks (Ibs/day) (Lhw)	Domestic/ Commercia (lbs/day) (Ldom)	(lbs/day	Limit	Safety Factor (%) (SF)	Safety Factor Pounds (SFP)
Copper	0.019	0.858	0.042	1	93.63	1500	0.13	0.839	5.612	0.910	4.141	26.132	10.000	0.561
Zinc	0.019	0.858	0.042	1	72.27	2800	0.189	0.839	13.571	1.322	10.892	68.734	10.000	1.357
(Qind) (Qpotw) (Qsldg) (PS) (Rpotw) (Cslcrit) (Qdom) (Cdom) (Lhw) (Lind) (Cind) (SF) 8.34 Lhw =	POTW's av Sludge flow Percent sol Removal ef 503 sludge Domestic/c Domestic/c Maximum a Domestic/c Maximum a Industrial al Safety factc Unit conver	rerage influent to disposal ids of sludge ficiency acro- criteria in m ommercial b ullowable hea ullowable hoa ullowable ind llowable loca- or as a perce- sion factor rit * (PS/100)	nt flow in MC in MGD. a to disposal poss POTW a g/kg dry sluc ackground fl ackground c adworks polli ackground lo ustrial loadir al limit for a g nnt.	s a percent. Ige.	pling period icular pollutant iTW in pounds r a particular p	in mg/l. per day (lbs/d	ay).							

		Local Limits	s Determinat	ion Based on NPDES M	lost Stringent	Criteria						
	ENVIRO	IMENTAL C	CRITERIA AN	ND PROCESS DATA BA	ASE		MAXIMUM L	OADING	INDUSTRIAL			
	IU Pollut.	POTW	Removal	NPDES Most Stringent Water	Domestic a	and Commercia	Allowable	Domestic/	Allowable	Local	Safety	Safety
Pollutant	Flow	Flow	Efficiency	Quality Criteria	Conc.	Flow	Headworks	Commercial	Loading	Limit	Factor	Factor
	(MGD)	(MGD)	(%)	(mg/l)	(mg/l)	(MGD)	(lbs/day)	(lbs/day)	(lbs/day)	(mg/l)	(%)	Pounds
	(Qind)	(Qpotw)	(Rpotw)	(Ccrit)	(Cdom)	(Qdom)	(Lhw)	(Ldom)	(Lind)	(Cind)	(SF)	(SFP)
Copper	0.019	0.858	93.63	0.147	0.13	0.839	16.513	0.910	13.952	88.049	10	1.651
Zinc	0.019	0.858	72.27	0.062	0.189	0.839	1.600	1.322	0.117	0.741	10	0.160
(Qind) (Qpotw) (Rpotw) (Ccrit) (Qdom) (Lhw) (Lind) (Cind) (SF) 8.34 Lhw =	POTW's ave Removal eff NPDES dail Domestic/cc Domestic/cc Maximum al Domestic/cc Maximum al	erage influer iciency acro y maximum mmercial b lowable hea mmercial b lowable ind owable loca r as a perce sion factor * Qpotw	nt flow in MG poss POTW as permit limit f ackground flo ackground co adworks pollu ackground lo ustrial loading I limit for a gi	or a particular pollutant i	ng period n mg/l. Ilar pollutant ir N in pounds p a particular po	n mg/l. er day (lbs/day)						

	EN\	/IRONMENT	AL CRITER	A AND PROCESS D	ATA BASE		MAXIMUM	LOADING	INDUSTRI	AL		
	IU Pollut.	POTW	Removal	Activated Sludge	Domestic	and Commerci	a Allowable	Domestic/	Allowable	Local	Safety	Safety
Pollutant	Flow	Flow	Efficiency	Inhibition Level	Conc.	Flow	Headworks	Commercial	Loading	Limit	Factor	Factor
	(MGD)	(MGD)	(%)	(mg/l)	(mg/l)	(MGD)	(lbs/day)	(lbs/day)	(lbs/day)	(mg/l)	(%)	Pounds
	(Qind)	(Qpotw)	(Rprim)	(Ccrit)	(Cdom)	(Qdom)	(Lhw)	(Ldom)	(Lind)	(Cind)	(SF)	(SFP)
Copper	0.019		93.630	1.000	0.130	0.839	112.335	0.910	100.192	632.283	10.000	11.233
Zinc	0.019	0.858	72.270	0.300	0.189	0.839	7.741	1.322	5.645	35.623	10.000	0.774
(Qpotw) (Rprim) (Ccrit) (Qdom)	Removal e Activated s		oss across p old inhibition ackground fl	ow in MGD.								

	Local	Limits Dete	rmination Bas	ed on Nitrification Inh	ibition Level							
	ENVI	RONMENT	AL CRITERIA	AND PROCESS DA	TA BASE		MAXIMUM L	OADING	INDUSTRIA	L		
Pollutant	IU Pollut. Flow (MGD) (Qind)	POTW Flow (MGD) (Qpotw)	Removal Efficiency (%) (Rsec)	Nitrification Inhibition Level (mg/l) (Ccrit)	Domestic a Conc. (mg/l) (Cdom)	r Commercial Flow (MGD) (Qdom)	Allowable Headworks (lbs/day) (Lhw)	Domestic/ Commercial (lbs/day) (Ldom)	Allowable Loading (Ibs/day) (Lind)	Local Limit (mg/l) (Cind)	Safety Factor (%) (SF)	Safety Factor Pounds (SFP)
Copper	0.019	0.858	93.63	0.05	0.13	0.839	5.617	0.910	4.145	26.161	10	0.562
Zinc	0.019	0.858	72.27	0.08	0.189	0.839	2.064	1.322	0.535	3.379	10	0.206
(Qpotw) (Rsec) (Ccrit) (Qdom) (Cdom) (Lhw) (Ldom) (Lind) (Cind) (SF) 8.34 Lhw =	Removal eff Nitrification f Domestic/cc Maximum al Domestic/cc Maximum al	iciency acro hreshold inlormercial b immercial b lowable heat immercial b lowable hot iowable indo owable loca r as a perce	oss primary tre hibition level, r ackground flov ackground con adworks pollut: ackground loa ustrial loading Il limit for a giv		v treatment as p cular pollutant ir TW in pounds p r a particular po	n mg/l. ber day (Ibs/day		lay).				

	ENVIRON	MENTAL	CRITERIA A	ND PROCESS DA	TA BASE		MAXIMUM	LOADING	INDUSTRI	AL		
	IU Pollut.	POTW	Removal	NPDES Average	Domestic and	Commercial	Allowable	Domestic/	Allowable	Local	Safety	Safety
Pollutant	Flow	Flow	Efficiency	Monthly Limit	Conc.	Flow	Headworks	Commercia	Loading	Limit	Factor	Factor
	(MGD)	(MGD)	(%)	(mg/l)	(mg/l)	(MGD)	(lbs/day)	(lbs/day)	(lbs/day)	(mg/l)	(%)	Pounds
	(Qind)	(Qpotw)	(Rpotw)	(Ccrit)	(Cdom)	(Qdom)	(Lhw)	(Ldom)	(Lind)	(Cind)	(SF)	(SFP)
ois(2-Ethylhexyl) phthalate	0.019	0.858	80.180	0.002	0.00431	0.839	0.065	0.030	0.028	0.17878	10.000	0.0065
(Qpotw) (Rpotw) (Ccrit) (Qdom) (Cdom) (Lhw) (Ldom) (Lind) (Cind) (SF) 8.34	Removal effic NPDES daily Domestic/cor Domestic/cor Maximum allo Domestic/cor Maximum allo Industrial allo Safety factor Unit conversi	ciency acre maximum nmercial b nmercial b wable he nmercial b wable ind wable loca as a perce on factor	oss POTW a permit limit packground packground adworks pol packground ustrial loadi al limit for a	for a particular pol flow in MGD. concentration for a lutant loading to the	lutant in mg/l. particular pollutant i e POTW in pounds p W for a particular po pounds per day.	oer day (lbs/day)		day).				
Lhw =	8.34 * Ccrit *	Qpotw										

		Local Limit	s Determina	tion Based on NF	PDES Most Stringent	Criteria						
	ENVIRON	IMENTAL	CRITERIA A	ND PROCESS D	DATA BASE		MAXIMUN	LOADING	INDUSTR	IAL		
	IU Pollut.	POTW	Removal	NPDES Most Stringent Water Quality	Domestic and	Commercial	Allowable	Domestic/	Allowable	Local	Safety	Safety
Pollutant	Flow (MGD) (Qind)	Flow (MGD) (Qpotw)	Efficiency (%) (Rpotw)	Criteria (mg/l) (Ccrit)	Conc. (mg/l) (Cdom)	Flow (MGD) (Qdom)	Headworks (lbs/day) (Lhw)	Commercia (lbs/day) (Ldom)	Loading (lbs/day) (Lind)	Limit (mg/l) (Cind)	Factor (%) (SF)	Factor Pounds (SFP)
bis(2-Ethylhexyl) phthalate	0.019	0.858	80.180	0.002	0.00431	0.839	0.065	0.030	0.028	0.17878	10.000	0.0065
(Qpotw) (Rpotw) (Ccrit) (Qdom) (Ldom) (Lhw) (Lind) (Cind) (SF) 8.34	POTW's ave Removal effi NPDES mon Domestic/co Domestic/co Maximum all Domestic/co Maximum all	arage influe iciency acru- nthly maxim mmercial b mmercial b lowable he mmercial b lowable inco- powable loca- as a perco-	ent flow in Mo oss POTW a num permit I packground adworks pol packground lustrial loadin al limit for a g	GD. as percent. imit for a particula flow in MGD. concentration for lutant loading to t loading to the PC	allons per Day (MGD) ar pollutant in mg/l. a particular pollutant i the POTW in pounds p DTW for a particular po in pounds per day. mg/l.	n mg/l. per day (lbs/day)						